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Abstract: The problem of obtaining a reference 
signal for ERP during reading tasks is here 
addressed. The classical procedure based on the 
calculation of grand-averages on a group of 
subjects, is strongly affected by the high inter-
subject variability, that becomes especially relevant 
when dealing with long-latency waves related to the 
cognitive functions. A dynamic time warping 
procedure is applied to the signals after a time-scale 
decomposition through wavelet transform. The 
multi-scale decomposition of the signal permits to 
optimise the time warping procedure to the 
different temporal dynamics of the analysed 
components and then the reconstruction of a more 
reliable template. The procedure is applied for the 
mapping of the cognitive functions in the study of 
normal and dyslexic children. 
 
Introduction 
 

Developmental dyslexia is a neurological disorder 
characterized primarily by reading difficulties despite 
average intelligence, adequate education and normal 
sensory acuity. The aetiology of this condition is still 
unknown: the most recent theories hypothesize a 
genetic disruption of the cerebral structure, that would 
produce compromised phonological awareness and 
visual/auditory perception [1]. In order to investigate 
the reading processes, event-related potentials (ERPs) 
are recorded in normal children and in children with 
developmental dyslexia. Comparing ERPs from 
different subjects is difficult for the high inter-
individual variability of the morphology: dealing with 
children performing cognitive tasks this variability 
greatly increases. As a consequence, it is difficult to 
define a normal “pattern”. Usually, a grand-average is 
evaluated from a group of normal subjects, but this is 
heavily affected by inter-individual variability 
producing jitter in alignment of the relevant peaks. 
Previous works [2, 3] proposed an approach based on 
Dynamic Time Warping (DTW) technique for the 
automatic alignment of the waves and quantification of 
the morphological characteristics of ERPs. However 
the performances of the method depend on the setting 
of some parameters and on the time spreading of the  
different waves.  

The wavelet decomposition allows the alignment 
of the signal at different scales. After proper 
reconstruction of the aligned details,  the method leads 

to the calculation of a reliable template for normal 
subjects, which can constitute a reference pattern for 
evaluating pathological subjects. 
 
Materials and Methods 
 

Acquisition protocol: 16 normal and 4 dyslexic 
children aged 9, underwent the study. The clinical 
protocol was designed including different tasks, which 
are supposed to elicit, in the child, different level of 
responses, discriminating among prevalent visual, 
attentive, cognitive and phonetic functions. The children 
underwent four different trials of reading-related 
activity, according to the following order: letter 
presentation (lp, the alphabetic letter was presented on a 
screen, and the child had only to watch at it), symbol 
presentation (sp, symbols without any semantic 
meaning were presented on the screen), letter 
recognition externally paced (lre, the child had to 
pronounce the letter presented on the screen by an 
external operator), letter recognition self paced (lrs the 
child had to pronounce the letter presented on the screen 
by himself pushing a button. The EEG was recorded 
through 10 different leads located according the 
modified 10-20 international system. In order to better 
quantify the stimulus related activity the following 
signals were also recorded: EOG for the evaluation of 
the ocular movements and blinks; lip EMG and 
phonogram (PHN), through a microphone, for the 
characterization of the speaking activity; ECG; 
pneumogram (PNG); arm EMG for the detection of the 
onset of the self paced presentation.  

Each stimulation was repeated until the number of 
artifact-free responses was large enough for a reliable 
calculation of the average, at least 80-100 responses 
after artifact removal (see below). 

Signal analysis The first step of the analysis was the 
ocular and blinking artifact removal according to the 
methodology presented in [4]. The obtained sweeps 
were then averaged according the traditional procedure, 
for each EEG channel and for each trial. The further 
step is usually the calculation of the grand-averages on 
the normal population in order to obtain reference 
patterns for the evaluation of the pathological signals. 
However the inter-subject variability, especially in the 
long latency components, related to cognitive and 
reading functions, may produces a jitter among the 
signals and a misalignment of the ERPs. For such a 
reason the Dynamic Time Warping procedure was  



proposed in [2, 3] in order to obtain an optimized 
template.  

The Dynamic Time Warping (DTW) is a technique 
of nonlinear alignment for locally contracting or 
dilating the time axis of two signals, in order to reduce 
distortions due to normal morphological differences in 
the waveforms. The procedure is introduced for 
minimizing latency differences by means of a function 
w(k) called warping function, defined as in the 
following: 

 
 
 

The warping function is obtained through the 
minimization of the dissimilarity function D(x,y), 
where 
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x i y j( ) ( )−  is a measure of the distance between 
the waveforms and can be defined differently. In the 
current application it is evaluated as:  

 

. 
The warping procedure produces important results 

and applications: 1) the possibility of a more realistic 
averaging of the sweeps, by summing samples with a 
morphological, instead of temporal, correspondence; 
2) automatic tracking of fiduciary points on the 
sweeps; 3) creation of a template of the ERP. Some 
bounds are given to the algorithm, for example the r 
value that represents the maximum time shift allowed 
between two waves to be aligned. The same r can not 
be used for mid-latency or long-latency waves that are, 
at the same time, present in the same response. In 
addition the DTW algorithm has an heavy 
computational cost which increases with the number of 
samples in the signals. The above considerations led to 
the solution of applying the DTW procedure to the 
signals after wavelet decomposition. 

Wavelet Transform performs the analysis of a signal 
x(t) according to wavelet functions that can be defined 
as: 
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Each wavelet is obtained by scaling (contracting or 
dilating) and shifting in time a wavelet prototype (or 
mother wavelet) h(t). 

In the discrete time case the dilation factor a and the 
shifting factor τ vary according to the following dyadic 
rule: 
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where a0 = 2, j and k are integers and T is the 
sampling t o e d nal.  
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characteristic of being multi-scale. In fact, for large 
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lues of j, we can look at very small details in the 
signal (high time resolution and low frequency 
resolution), and for small values of j we look at the 
signal through a larger scale (low time resolution and 
high frequency resolution). 

Signal analysis. Fig.1 shows the ERP’s recorded 
from two different subjects 

∑= )k(d)y,x(D

task. The wavelet coefficients for details (D1-D7) and 
approximation A7 are also displayed. The mother 
wavelet used for the decomposition is the Coiflet 2. 

From a first visual inspection of the figures we can 
derive a few observations: 

the waveforms of the ERP’s in the two subjects are 
quite different, even if the same characteristic peaks 
can be detected; 
details D1-D3 do not actually contain relevant 
information, but)j(y)i(x)j(y)i(x)j(y)i(x)j,i(d &&&&&& −+−+−=
signal; 
short latency waves are characterized by high 
frequencies, while long latency waves are 
characterized by low frequencies and are then 
separated into different wavelet details, as represent 
the ERP viewed at different scales; 
As the decomposition level increases the number of 
wavelet coefficient decreases. 

The above observations suggested the following 

calculation of a template: 
1. ERP’s decomposition through discrete wavelet 

transform up to level 7; 
2. alignment through DTW of the approximation 

coefficients for the complete post-stimulus time; 
3. alignment through DTW of the D7 coefficients for 

the complete post-stimulus time; 
4. alignment through DTW of the D6 coefficients for 

the post-stimulus time up to 1.3 sec 
5. alignment through DTW of the D5 coefficients for 

the post-stimulus time up to 0.85 sec; 
6. alignment through DTW of the D4 coefficients for 

the post-stimulus time up to 0.47 sec; 
7. reconstruction of the average starting from the 

aligned coefficients. 
Fig. 2 shows an example of the coefficients al level 
for two different subjects. The dotted lines link the 
fficient pairs with a morphological correspondence 

in the two sequences, while the dark line in the middle 
is the calculated double mean.  The procedure is iterated 



according a binary tree on the whole set of 16 subjects 
and for the coefficients of interest (D4, D5, D6, D7, 
A7). A reference template is obtained by the wavelet 
reconstruction procedure on the aligned details and A7 
approximation. Fig.3 shows an example of the 

template (bold line) superimposed to the traditional 
grand-average (thin line). The template results in a more 
readable and interpretable pattern than the 
grandaverage. 
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the sp task. The middle panels show the detail D1-D7 of the wavelet decomposition, while the lower panels shows the 
last approximation A7. The line at time t = 0 represents the stimulus time. 
 

e lower panels shows the 
last approximation A7. The line at time t = 0 represents the stimulus time. 
 

Figure 2 Alignment of the coefficients al level D4 (Fz, Figure 2 Alignment of the coefficients al level D4 (Fz, 
sp) for the subjects shown in Fig.1. The dotted lines link 
the coefficient pairs with a morphological 
correspondence in the two sequences, while the dark 
line in the middle is the calculated double mean. 
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re effort in the interpretation of the stimulus and in 
the association between the presented symbol and the 
production of a sound, the amplitude of the Nmajor 
peak increases.  
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Figure 4 Characteristic peaks of event-related response 
to an externally paced stimulus (Fz during lpe task). The 
marked peaks have been related to different cognitive 
tasks (see text for details) (time in sec, and amplitude in
uV). 
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Figure 5 Superimposition of templates obtained 
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Abstract: Aim of this work is to reduce ocular 
artefacts superimposed to EEG recordings for 
improving the investigation of cognitive functions in 
children. ERPs were recorded in normal children 
during the execution of active and passive reading 
tasks. Principal Component Analysis was applied to 
isolate in a single component the ocular artefacts: the 
first or the second principal component was 
subtracted when the correlation coefficient between 
the component and EOG was over a certain 
threshold. Simulated data were employed to assess 
that the method did not alter ERPs morphology. 
Application of the method to real recordings allowed 
a great increase of the number of trials useful for 
averaging. A comparison among the ERPs recorded 
in different conditions highlighted interesting 
neurophysiological correlates of reading processes. 
Reading non-alphabetic symbols requires less 
cognitive resources than reading letters. Active 
reading during an externally-paced condition 
produces ERPs of greater amplitude than passive 
reading. Active reading during a self-paced 
condition further increases ERPs amplitude, 
decreases the latency of pre-lexical components and 
increases that of post-lexical components.  
 
Introduction 
 

Learning to read is a very important skill for the 
social and working life of each individual. Intact 
intellective functions, normal sensory acuity and 
adequate education are necessary prerequisites for 
reading. Reading processes are very complex and 
involve perceptive systems, both visual and auditory, 
verbal-motor coordination, attention mechanisms, 
phonological analysis skills, memory and feedback 
processes.  

In order to investigate the cerebral functions 
engaged in the reading processes, event-related 
potentials (ERPs) were recorded: this approach is 
simple and low-cost, allows an high temporal resolution 
analysis and is non-invasive. ERPs were computed by 
averaging several EEG traces synchronized with 
specific repetitive events. They were analysed through a 
quantification of certain parameters, latency and 
amplitude of the most relevant components. The SNR of 

ERPs depends on the number of averaged trials: as this 
number increases, the cancellation of raw EEG 
improves together with ERPs quality. EEG recordings 
are usually affected by artefacts of different origins, 
such as muscular activity, gross body movements, etc. 
that constrain to reject a consistent amount of trials from 
averaging. The artefacts deriving from ocular 
movements and blinks are particularly important 
because they are physiological and larger in amplitude 
than the cerebral responses. The usual approach to these 
artefacts consists in rejecting the artefact-contaminated 
trials, thus lengthening the tests duration. Some 
analytical approaches have been proposed to reduce 
ocular artefact: linear regression, in the time or 
frequency domain (1,2,3,4), autoregressive models (5) 
and topographic approaches (6,7).  

In the present work we developed a method based on 
Principal Component Analysis (PCA) for reducing 
ocular artefacts in event-related potentials (8). Then, we 
applied the method to real ERPs for extracting 
components related to reading functions. 
 
Materials and Methods 
 

Principal Component Analysis (PCA) is a procedure 
for decomposing a set of signals into an equal number 
of components, called Principal Components (PCs), that 
combine linearly to reconstruct the original signals. The 
PCs are orthogonal, represent the maximum amount of 
spatial variance contained in the original data and 
minimize the reconstruction mean squared error. 
Therefore, PCA is able to pick up the coherent activity 
spread over the data.  

We assume that cerebral activity derives from a 
linear combination of independent activities generated 
by different sources, the most relevant being the 
cerebral and ocular ones. Furthermore, ocular activity 
practically transmits on the scalp with the same 
morphology recorded by EOG, scaled in amplitude 
according to the distance from the eyes and without 
significant delays. Therefore, ocular artefacts 
transmitting on several scalp locations are strongly 
correlated.  

We organized EEG and EOG recordings into a 
matrix D in column order: 
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Applying PCA to matrix D the generic EEG recording 
can be expressed by: 
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where mna ,  is the weight of the mth PC on the nth EEG 
trace. Including EOG recording in matrix D makes 
easier to isolate in a single PC the ocular activity 
characterized by a great spatial variance because EOG is 
independent from EEG signals and completely 
represents the artefact. 

PCA technique is based on the estimate of the spatial 
correlation matrix R̂  of the original data. PCs can be 
computed by the following equation: 

**
n DaPC n=                                                           (3) 

where  na  is the nth eigenvector of R̂  and * denotes 
transpose. The spatial variance associated to the nth PC 
is obtained as: 

( ) 100% ×= ∑ j j
n

λ
λPC                              (4) 

where nλ  is the nth eigenvalue of R̂ . If it is possible 
to demonstrate that one PC entirely contains only the 
ocular artefact, the subtraction of the considered PC 
produces the artefact reduction, as shown by the 
following equation: 

*
njjnew PCEEGEEG nja ,−=                                 (5) 

The weight nja ,  is related to the distortion entity 

present in jth EEG trace due to artefact transmission. 
Applying this method to real recordings we 

empirically noticed that ocular artefacts were mainly 
contained in the first 2 PCs representing the greatest 
part of data spatial variance. Therefore, the first PC was 
subtracted if its correlation with EOG was ≥ 0.9; 
otherwise, the second PC was subtracted if its 
correlation with EOG was ≥ 0.95. In all other cases, we 
considered that EEG recordings were not affected by 
ocular artefacts and consequently we did not modify the 
original data. Since the first 2 PCs contain the coherent 
activity present in the data, the method also partially 
reduces raw EEG activity. 

Some simulations were executed to test the method’s 
performances varying EOG amplitude and artefacts 
transmission characteristics. See (8) for details. In 
particular, we verified that PCs subtraction does not 
alter averaged ERPs morphology: we used simulated 
EOG, raw EEG and ERP to build a set of trials. As an 
index of averaged ERPs quality we considered the 
correlation coefficient with the originally simulated 
ERP. The quality of an ERP computed from 60 artefact-
free trials is high and depends only on the finite number 
of averaged trials that prevents a complete cancellation 
of raw EEG. The quality of an ERP computed using 30 
artefact-free and 30 artefact-contaminated trials is low 

and strongly dependent on artefact transmission in the 
EEG channels. After the rejection of the artefact-
contaminated recordings, only 30 trials can be averaged: 
the corresponding ERP has a better quality but it greatly 
suffers from the low number of averaged trials. 
Applying the method, an ERP is obtained from 30 
artefact-free and 30 artefact-corrected trials: its quality 
is close to that of the ERP computed using 60 artefact-
free trials and is independent from artefact transmission 
in the original recordings. These results confirm that the 
method increases the number of useful trials while 
leaving unaltered the cerebral responses. 

The method was applied to ERPs recorded from 24 
normal children of age between 8 and 9 yrs. Each 
subject performed four reading tasks. The stimuli 
consisted in Italian alphabetic capital and small letters 
and non-alphabetic symbols visually presented. In the 
first two tasks (symbol presentation SPR and letter 
presentation LPR) subjects passively watched at 
symbols and letters respectively without making any 
effort in reading or articulating silently them. In the 
other two tasks (externally-paced letter recognition 
LRE and self-paced letter recognition LRS) subjects 
read aloud the letters that appeared on the screen after 
the technician or the subjects themselves respectively 
pressed a button. These tasks were specifically designed 
to progressively elicit several mechanisms involved in 
reading. We employed simple stimuli, i.e. single letters 
and symbols, to prevent the subjects resort to high-level 
functions for reading, such as inferences from the 
context. Furthermore, we considered that reading is an 
active process where the individual intentionally 
activates specific perception, attention and motor 
processes for task execution. For this reason, we also let 
the subjects voluntary decide when to begin reading by 
pressing a button (LRS). EEG was recorded from Fz, 
Cz, Pz, Oz, C4’, C3’ T4, T3, P4, P3 referred to linked 
mastoid. EOG was bipolarly recorded using 2 electrodes 
placed over and below the right eye. EEG and EOG 
recordings were bandpass filtered between 0.02-30 Hz. 
EMG from the lips and the forearm flexor muscles were 
recorded and bandpass filtered between 160-3000 Hz. 
Each trial lasted 4 s, 2 s pre- and 2 s post-stimulus. The 
sample rate was 250 Hz.  

The latency and amplitude of the most relevant 
components were manually measured. A two-sided 
paired t-test analysis was performed on 8 normal 
children of mean age 8.75 ± 0.26 yrs to compare the 
latency and amplitude of the ERP components in the 
four reading tasks. We report in the Results paragraph 
the statistically significant latency and amplitude 
differences at the level of p<0.05. 
 
Results 
 

Figure 1 shows the EOG and some EEG recordings 
of a single real trial: the ocular activity recorded by 
EOG transmits in the EEG channels with different 
amplitudes. The first PC computed by means of PCA 
represents the 85% of the data spatial variance and its 



correlation with EOG is 0.99. Subtracting this PC 
allows to reduce the most evident distortions of the EEG 
recordings caused by ocular artefact transmission. The 
modification of the original data is mainly limited to the 
temporal window containing the  artefact and to the 
most  affected EEG channels. 

 

 
Figure 1: Solid thin lines represent the original 
recording. Solid thicker lines represent the same 
recording after ocular artefact reduction. 

 
   Applying the method to different sets of ERPs, we 

noticed that the recovery of trials depends on task 
condition: in fact, for increasing effort and attention 
demand the occurrence of artefacts increases. The mean 
percentage of trials useful for averaging in our original 
data was 47.1±17.1% and 37.9±13.4% for passive and 
active conditions respectively. The percentage of useful 
trials is significantly reduced in active tasks compared 
to passive ones (p<0.01) because active tasks elicit more 
artefacts, both of ocular and non-ocular origin. After 
PCA application, the number of useful trials 
significantly increases in all tasks (p<0.001). In 
particular, 41.0% and 39.1% of the originally rejected 
trials was retrieved in passive and active conditions 
respectively. 

 
Figure 2: Superimposition of grand averages of ERPs 
recorded in LPR (thinner lines) and SPR (thicker lines). 

 
  On the basis of the EMG activity of the forearm 

flexor muscles and of the lips, the ERP components can 
be divided into four periods. The components N0, P0, 
N1, P1 (<160 ms) belong to the pre-lexical period and 
correspond to the first stages of visual information 

processing; the components N2, PmaxA, PmaxB, N3 
(160-420 ms) belong to the lexical period and are likely 
related to stimuli categorization and control 
mechanisms; the long-latency components P4, N4, 
P600a, P600b (420-800 ms) are characteristic of the 
post-lexical period and are associated with long-term 
memory and feedback processes.  

 
Figure 3: Superimposition of grand averages of ERPs 
recorded in LPR (thinner lines) and LRE (thicker lines). 

 
Figure 4: Superimposition of grand averages of ERPs 
recorded in LRE (thinner lines) and LRS (thicker lines). 

 
Figure 2 shows the superimposition of grand 

averages of ERPs recorded in the letter presentation 
(LPR) and symbol presentation (SPR) tasks. The latency 
of N1 in Pz was significantly increased (∆l=41 ms) in 
SPR compared to LPR, while that of N4 in Cz and C3’ 
was reduced (∆l=50 ms). The following potentials were 
statistically reduced in amplitude in SPR compared to 
LPR: N1 in Pz, P1 in T4, N2 in T3 and P3, PmaxA in 
Cz and  PmaxB in P4 (∆a between 1.39 and 5.16 µV).  

Figure 3 shows the superimposition of grand 
averages of ERPs recorded in the letter presentation 
(LPR) and externally-paced letter recognition (LRE) 
tasks. The latency of N2 in T3 significantly decreased 
(∆l=14 ms) passing from LPR to LRE, while that of N1 
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in Pz, PmaxB in P4 and N3 in Pz increased (∆l between 
10 and 23 ms), as well as the latency of P4 in T3 and 
P600a in P3 (∆l between 26 and 68 ms). The following 
potentials had an higher amplitude in LRE than in LPR: 
N2 in Oz, PmaxA in C4’, PmaxB in Oz and P4, N3 in 
T4 and T3 (∆a between 1.84 and 5.37 µV), P4 in T3 and 
of P600a in Oz and P4 (∆a between 2.69 and 4.28 µV). 

Figure 4 shows the superimposition of grand 
averages of ERPs recorded in the externally-paced 
(LRE) and self-paced (LRS) letter recognition tasks. 
The latency of N2 in P4 and PmaxA in Fz and C3’ 
decreased (∆l=15 ms) in LRS compared to LRE while 
that of N3 in T4 and T3 decreased (∆l=35 ms), as well 
as the latency of P4 in Cz and N4 in Fz (∆l=18 and 67 
ms respectively). The following potentials had an higher 
amplitude in LRS than in LRE: P1 in Pz (∆a=4.7 µV) 
and N3 in Cz, Pz, Oz, C3 and P3 (∆a between 4.61 and 
7.73 µV). 
 
Discussion & Conclusions 
 

The method for reducing ocular artefacts is based on 
a hypothesis of linear transmission of ocular artefacts 
over the scalp. With respect to linear regression, it does 
not require a manual selection of artefact-contaminated 
trials according to the subtype of ocular activity nor the 
computation of correspondingly different subtraction 
weights. Furthermore, the cerebral activity picked up by 
EOG does not influence the artefact reduction process 
because the subtracting PC is uncorrelated with both 
raw EEG and event-related responses. The method has a 
low computational cost and can be applied to compute a 
better average to be used as input of autoregressive 
models for improving single-trial response extraction. 
The threshold values applied to the correlation between 
EOG and the subtracting PCs are independent from 
subject and session and were empirically set according 
to the EEG montage and the ERP category. Artefact 
reduction realized by the method is effective even when 
EOG is recorded using only 1 bipolar channel: this 
characteristic allows to reduce both the complexity of 
the experimental set up and the discomfort for patients. 
The application of the method to real data reveals a 
significant increase of the number of trials for 
averaging: therefore the duration of tests is reduced and 
the quality of ERPs is improved. The method is 
computationally efficient and theoretically simple. It 
can be easily integrated in every tool for signal 
processing and its application does not require specific 
mathematical expertise. 

The main differences between LPR and SPR were 
noticed during the pre-lexical period: an overall 
reduction of both latency and amplitude of the ERP 
components in SPR compared to LPR suggests that 
processing non-alphabetic symbols requires less 
cognitive resources than processing letters (9). During 
the LRE task, there was a general increase of ERPs 
amplitude compared to LPR. This effect, localized in 
the temporal-parietal and posterior regions, could be 
explained with the activation of attention processes of 

these areas involved in reading (10). The self-paced 
letter recognition task produced a further increase of 
amplitude with respect to the externally-paced one: this 
increase could be explained as a recruitment of 
preparation and volitional processes. The involvement 
of these processes is also manifested in the increase of 
ERPs duration during the self-paced tasks in 
comparison to the externally-paced condition. These 
physiological evidences can be used in understanding 
the lack of acquisition of reading skills in different 
pathological conditions, as developmental dyslexia.  
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