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T
he aim of this article is to compute reliable templates of event-
related potentials (ERPs) for homogeneous groups of subjects and
to automatically quantify the morphological characteristics of the
ERPs. We developed a method based on dynamic time warping
(DTW). The method was applied to ERPs recorded from normal

and dyslexic children during two reading tasks. We found that characteris-
tic latency and amplitude changes of ERP components are due to task and
pathology. Our results support the idea that dyslexia involves different and
complex cerebral functions aside from the language system. This mathe-
matical approach provides reproducible analysis criteria that are crucial for
the reliability of ERP analysis.

Introduction
ERPs recorded during the execution of specific cognitive tasks are useful
for studying higher-order cerebral functions. This approach is worthwhile
because it allows the evaluation of brain behavior in vivo with high tem-
poral resolution; furthermore, it is noninvasive, easy to apply, and low in
cost. These characteristics make it particularly suitable in children stud-
ies. We recorded ERPs in normal children and in children with develop-
mental dyslexia to study the neurophysiological bases of reading
processes. Developmental dyslexia is a neuropsychological disorder that
involves reading abilities and coexists with average intelligence, adequate
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education, and normal sensory acuity. There is not full
agreement among researchers about the structural and func-
tional origins of dyslexia, and several models have been
proposed [1]–[4]; the most recent theories hypothesize a
genetic disruption of the cerebral structure that would affect
phonological awareness and visual/auditory perception [5],
[6]. This disorder is sometimes reversible when specific
rehabilitative therapies are performed on young children [7].
Therefore, it is important to deeply investigate the reading
processes in order to diagnose dyslexia as early as possible
and to work out efficacious and tailored treatments.

The analysis of ERPs is based on the quantification of their
morphological characteristics, primarily the latency and ampli-
tude of the most relevant components. Group analysis usually
stems from the computation of grand averages of ERPs on
homogeneous subjects.

Cognitive potentials are characterized by a great intra-
and interindividual variability, and their morphology is
deeply influenced by age and pathology. The components
with long latency significantly vary with scalp site and
stimulation paradigm [8].

The marked variability of cognitive potentials recorded in
children has important consequences for the analysis and
interpretation of their morphological characteristics. First, the
components resulting from intersubject grand averaging
appear smoothed because of latency variability; therefore
peaks detection loses precision. Furthermore, the identification
of the relevant components must be manually performed by
skilled researchers after long and complex training. Due to the
variable characteristics of these potentials, the analysis
approach is often slightly modified as observations and experi-
ence increase. For these reasons, the quantification of ERPs’
morphology is time-consuming and greatly affected by the
subjective judgment of the experimenter.

This work describes a nonlinear alignment method based
on the DTW technique for computing reliable ERP templates
for homogeneous groups of subjects and for automating the
quantification of ERPs’ morphology. The results obtained
from comparing reading-related potentials recorded from both
normal and dyslexic children are also reported.

Method
DTW is a nonlinear alignment algorithm that reduces the
temporal differences between morphologically similar signals
through local compressions and extensions of their temporal
axes [9]–[10]. The analytic procedure followed by the method
consists in two different steps performed on paired signals.
The first step is the identification of the best correspondence
between the samples of the signals according to certain crite-
ria of similarity. The second step consists of building up a
new signal by condensing the morphological characteristics
of those signals from which it was computed. 

Given the two signals:

x = {x(i) 1 ≤ i ≤ I}

y = {y( j) 1 ≤ j ≤ J}

with the same sampling rate, it is possible to graphically depict
a temporal correspondence between their samples in a
Cartesian plot, as shown in Figure 1. The line linking the asso-
ciated samples is called the warping function (WF):

WF = {{{WWWFFF(((kkk))) = (
iii(((kkk))),,, j(k)

)
1 ≤ k ≤ K}}}

with max (I, J) ≤ K < I + J − 1.

The WF has to respect the boundary limitations: WF(1) =
(1, 1) and WF(K) = (I, J). This means that the first and the
last samples of the signals x(i) and y(j) have to be associated
together. In this way, all the signals samples are considered
in the alignment. Furthermore, the WF has to be continuous
and monotonic, not decreasing. As a consequence, the asso-
ciation between the samples of the signals is univocal with-
out skips of samples. In order to prevent excessive
adjustment of the time axes during alignment, the WF has to
be confined in the region around the main diagonal defined
by the following relation:

|i(k) − j(k)| ≤ r.

This constraint prevents that two samples of the signals far-
ther than r samples are associated together. Due to the
noise usually superimposed on the signals, it is advisable to
avoid the WF following the noise more than the signal.
With this intent, the following slope constraint condition
was imposed:

p = n
/

m

where n represents the number of diagonal segments and m the
number of horizontal or vertical segments that the WF can
consecutively contain. This constraint prevents, after m con-
secutive horizontal or vertical segments, the WF stepping fur-
ther in the same direction without making at least n
consecutive diagonal segments.

Fig. 1. An example of a warping function (WF(i (k), j (k)))com-
puted on the sampled signals x(i )and y(j).
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In case of no distortion, the WF is equal to the main diago-
nal. The only allowed moves of the WF are: horizontal (com-
pression axis j), vertical (compression axis i), and diagonal (no
compression axes i and j).

In order to compute the WF, a measure of the morphologi-
cal distance between the samples of the signals was defined.
This measure was called dissimilarity function and was
described by the following equation:

d(k) =
∣∣∣xn

(
i(k)

) − yn

(
j(k)

)∣∣∣ +
∣∣∣x′

n

(
i(k)

) − y′
n

(
j(k)

)∣∣∣

where the apex ′ indicates first derivative and n indicates
normalization between 0 and 1. This function was comput-
ed at every point of the warping plane, satisfying the pre-
viously imposed constraints. Wishing to align the signals
according to their morphological similarity, the association
between their samples is obtained by minimizing the fol-
lowing figure of merit:

D(x, y) =

K∑
k=1

d (k) s (k)

K∑
k=1

s (k)

where the weights s(k) determine if the compression or
extension of the temporal axis of one signal has to be privi-
leged in comparison with the other. In the present work, we

assumed that all the signals conveyed the same information;
therefore a symmetric alignment was performed by comput-
ing the weights s(k) as indicated below:

s(k) = (
i(k) − i(k − 1)

) + (
j(k) − j(k − 1)

)

with 
K∑

k=1
s (k) = I + J.

Applying dynamic programming principles, a matrix
G
(I,J)

= [g(k)] = [g(i(k), j(k))] was computed as follows:

g(k) = min
k−1

[
g(k − 1) + d(k)s(k)

]

with the initial condition:

g
(
W(1)

) = g(1, 1) = d(1, 1)s(1),

The generic element g(k) measures the minimum cost to reach
the point (i(k), j(k)) from (1, 1). The WF representing the
best alignment between the whole signals corresponds to the
path in matrix G with the minimum cost reaching the point
(I, J) from the point (1, 1).

At this stage, a new waveform (template) is computed by
averaging the original signals according to the WF. This
new waveform condenses the morphological characteristics
of the signals x(i) and y( j) without being distorted by the
latency differences between their components. We obtained
the template by applying the double-mean technique con-
sisting of three steps. The first step produces a vector r, that
appears as follows:

r =
[
. . . x

(
i(k)

)
y
(

j(k)
)

x
(
i(k + 1)

)
y
(

j(k + 1)
)

. . .
]
.

The pair [x(i(k)) y( j(k))] is repeated two times when the
segment between WF(k − 1) and WF(k) is diagonal.

The second step consists in the computation of a first aver-
age m(a) according to the following:

m(a) = r(b) + r(b + 1)

2
.

The last step allows the computation of the template as an
average of the signal m(a):
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Fig. 2. The alignment of the sampled signals x(i )and y(j) . The
segments between the traces represent the temporal corre-
spondence between morphologically similar samples of the
two signals. The thick line represents the template computed
with the double-mean technique after aligning x(i )and y(j).
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their components when averaging

across subjects is applied. 
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AW(l) = m(a) + m(a + 1)

2
.

Figure 2 shows the temporal correspon-
dence between two signals, x(i) and y( j),
after alignment and the template resulting
from the double-mean technique.

The computation of the template on
more than two signals is realized by iter-
atively applying the method described
above to paired signals following a bina-
ry tree structure, as shown in Figure 3.

After the computation of a template
on a set of signals, the alignment of the
template with each of the original sig-
nals produces a temporal correspon-
dence between the samples of  the
template and the signals. As a conse-
quence, the temporal location of physiologically relevant
components detected on the template is automatically
identified on the original signals, thus quantifying aver-
aged ERPs’ morphology.

Experimental Protocol

Subjects
Thirty-two normal children (nine females and 23 males) rang-
ing in age from 8.17 to 10.75 years (mean age 9.56 ± 0.67
years) and 16 children with developmental dyslexia (three
females and 13 males) ranging in age from 8 to 10.58 years
(mean age 9.05 ± 0.84 years) participated in the experiment.
The children with developmental dyslexia were diagnosed
according to DSM IV-R criteria [11], and the discrepancy
between chronological age and reading age was obtained using
the Direct Test of Reading and Spelling (TDLS), the Italian
adaptation of the Boder test [12], [13]. All children were
informed of the experimental procedure, and written consent
was obtained from parents and children. The entire experimen-
tal protocol was approved by the hospital’s ethical committee. 

Experimental Setting
The stimuli consisted of the central presentation of 21 Italian
alphabetic capital and small letters produced by a vacuum
fluorescent display (brilliance: 175 fLumen). Each stimulus
was 8 or 6 mm high for capital and small letters, respective-
ly, and 3.5 mm wide, and its persistence on the screen was
25 ms. A minimum of four sets of stimuli were presented in
the same random order for all subjects. When cooperation
was poor, in the case of some dyslexic children, it was neces-
sary to increase the number of stimuli. The distance between
the examined subject and the display was 70 cm, and the
angle of reading was 0.29.

Reading-related potentials were recorded during two con-
ditions. The first condition, letter presentation (LPR), was
passive: subjects passively watched letters without making
any effort to read or articulate them silently. The second con-
dition, letter recognition (LRE), was active: subjects read
aloud the letters randomly appearing on the screen after the
technician pressed a button. Single, isolated letters were used
instead of words to avoid semantic inferences from context
that might influence the reading processes of dyslexic

children. Subjects sat in a dimly illuminated, electrically and
acoustically shielded room.

EEG Recording
EEG was recorded using Ag-AgCl electrodes from
Fz, Cz, Pz, Oz, C4′, C3′, T4, T3, P4, P3 , referred to linked
mastoids. Resistance was less than 10 k�. The EOG was
bipolarly recorded using two electrodes diagonally placed
above and below the right eye. Electroencephalogram (EEG)
and electrooculogram (EOG) recordings were bandpass fil-
tered between 0.02–30 Hz. Lip movements were bipolarly
recorded by two electrodes placed on the superior and inferior
orbicularis oris muscles; this electromyograph (EMG) signal
was bandpass filtered between 160–3,000 Hz. Electro-
cardiogram (ECG) and pneumogram were also recorded, and
bandpass was filtered between 0.005–3,000 Hz. A microphone
was used to record the subjects’ voices. The EEG and EOG
signals were sampled at 250 Hz with 4 s analysis time, 2 s pre-
and 2 s poststimulus.

Analysis Protocol
Before averaging, the trials affected by artifacts generated by
nonocular sources of noise (gross body movements, muscular
activity, etc.) were rejected by visual inspection. Artifacts
from ocular movements and blinks were reduced by applying
principal component analysis as described in [14], thus
improving the signal-to-noise ratio (SNR) of averaged ERPs.

All ERPs were divided into four sets: two for the two
tasks in the control group and two for the two tasks in the
group with dyslexia. Alignment was separately performed
on each set of potentials: four templates were obtained by
iteratively applying DTW to pairs of signals according to a
binary tree. Since each set contained a number of signals
equal to a power of two, the binary tree was well balanced
and all the original signals equally contributed to the tem-
plate. The method was not applied to the entire ERP record-
ing window but to the signal recorded in the first 
700 ms poststimulus time. This restriction allowed reduction
of the computing time and was large enough to contain most
of the ERP components of interest. The parameters associat-
ed to the boundaries of the WF were empirically set to the
following values: r = 8 samples (corresponding to 
32 ms) and p = 1.

Fig. 3. The computation of a template on four signals (x1,x2,x3,x4). The thin seg-
ments represent the temporal correspondence between the samples of the sig-
nals. The method is applied to x1, x2, thus obtaining x1,2, and to x3,x4, thus
obtaining x3,4. Then, the method is applied to x1,2,x3,4, thus obtaining the template
x1,2,3,4.
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x3,4

x1,2
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A skilled technician analyzed the templates to detect the
most relevant ERP components. The temporal location of
these components on averaged ERPs was automatically
computed by aligning each original ERP with the corre-
sponding template.

The templates were superimposed on traditionally comput-
ed grand averages to point out the advantages of the method in
reducing jitter effect due to the potentials’ latency variability.
A two-sided t-test analysis was performed to evaluate the dis-
similarities in latency and amplitude of the relevant ERP com-
ponents between the two groups of children during the two
reading tasks (we considered significant the differences with
p < 0.025). The automatically identified ERP components
were compared to the manual measurements in order to quan-
tify the efficacy of the method. 

Results

Comparison Between Grand Averages
and Templates
Figure 4 shows the superimposition of grand averages (thick
lines) and templates (thin lines) computed on the ERPs record-
ed from C3′ and P3 channels in 32 normal children during the
letter presentation task. The latency variability of cognitive
ERPs produces a marked smoothing of their components

when averaging across subjects is applied. As a consequence,
certain waves can be hardly detected on the traces because
their amplitude is clearly reduced (see Figure 4). The deforma-
tion of the temporal axes performed by DTW allows the corre-
sponding peaks and troughs to align before interindividual
averaging. Therefore, the template’s morphology is sharper
than that of the grand averages, and the ERP components are
easier to identify.

Analysis of Reading-Related
Potentials in Normal and Dyslexic Children
The exact functional meaning of reading-related potentials is
not precisely known. On the basis of the EMG activity of the
lips, however, it is possible to divide their components into
three periods based on their latency range [15], [16]. Figure
5 shows an averaged ERP and the physiologically relevant
peaks and troughs that can be identified on its trace. The
components with latency less than 160 ms (P0, N1, P1)
belong to the prelexical period; they are associated with sen-
sory processing of stimuli. P1 is particularly evident in Oz,
because it denotes the activation of the primary visual cortex
in correspondence to stimuli presentation. The components
with latency in the range 160–420 ms (N2, PmaxA, PmaxB,
N3) belong to the lexical period; they are mainly concerned
with stimulus categorization. The components appearing

after 420 ms (P600a, N4, P600b) belong
to the postlexical period; they presum-
ably reflect long-term semantic memory
and feedback processes.

We compared the latency and ampli-
tude of the most relevant ERP compo-
nents between the two reading tasks in
each group of children and between the
two groups of children for  each reading
task. Figures 6–9 show the superimposi-
tion of different ERP templates in all the
recording sites. Each figure is associated
with two tables: the significant latency
differences are contained in Tables 1–4(a)
and the significant amplitude differences
in Tables 1–4(b).

Figure 6 shows the superimposition of
the templates computed for the ERPs recorded in normal chil-
dren during the letter presentation (thin lines) and the letter
recognition (thick lines) tasks. The latency of prelexical and
lexical components (N1, PmaxB) increased, passing from LPR
to LRE, while that of the postlexical components decreased
(P600b). These latency differences were statistically signifi-
cant in the parietal regions. The amplitude of the ERP compo-
nents in the LRE task is always significantly greater than in
the LPR task; this is evident in the lexical and postlexical peri-
ods and almost on all recorded cerebral regions. Significant
differences between the two templates are marked by arrows. 

The templates obtained from the two reading tasks by the chil-
dren with dyslexia are depicted in Figure 7. The latency of N1 in
frontal and central regions and of N3 in occipital and left-parietal
regions significantly decreased, passing from LPR to LRE. The
amplitude of the components recorded in the LRE task is always
significantly greater than in the LPR task. No significant ampli-
tude differences were found in the lateral-parietal regions.

The comparison between the ERP templates of normal chil-
dren (thin lines) and of children with dyslexia (thick lines)

IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE JANUARY/FEBRUARY 2005

Fig. 4. A superimposition of grand averages (thick lines) and templates (thin lines)
computed on the ERPs recorded from C3′ and P3 channels in 32 normal children
during the letter presentation task. The most evident differences between grand
averages and templates are marked.
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Fig. 5. The chronology of ERP components during reading
aloud recorded from C4 in a normal subject.
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during the letter presentation task is plotted in Figure 8. The
latency of most of the components is significantly greater in
dyslexic children in comparison with controls. No significant
differences were noticed in the temporal regions. Considering
the amplitude, only N2 in Cz is significantly higher in dyslexics
compared to controls.

For the letter recognition task, the templates computed from
the two groups of children are shown in Figure 9. In the ERP
components recorded from dyslexic children in the temporal
and occipital regions, there was a general increase of latency
in comparison with normal children. The significant amplitude
differences were located in the left hemisphere (channels C3′

and P3) and consisted of an amplitude reduction of N3 and an
amplitude increase of N2.

Quantification of the Method Performances
Considering the ERPs recorded from all the subjects in the
two conditions, the whole number of peaks and troughs that
can be automatically measured by means of DTW is 5,149.
The component P600b is not considered because its latency in
individual ERPs is often outside the upper boundary of the
temporal window used for the alignment. Of these compo-
nents, 68.56% were correctly identified by the method.

Figure 10 shows the percentage of correct automatic detec-
tions for each component. P1 is the potential that was best
identified automatically by the method, while the highest num-
ber of mistakes was made with N4. In general, the efficacy of
the method in the automatic detection of peaks and troughs
decreases as latency increases. In fact, the cognitive and

Fig. 8. A superimposition of the ERP templates obtained dur-
ing the LPR task from the control group (thin lines) and the
children with dyslexia (thick lines). Arrows mark significant dif-
ferences of latency and amplitude between the two poten-
tials (p < 0.025).

Fig. 9. A superimposition of the ERP templates obtained dur-
ing the LRE task from the control group (thin lines) and the
children with dyslexia (thick lines). Arrows mark significant dif-
ferences of latency and amplitude between the two poten-
tials (p < 0.025).

Fig. 6. A superimposition of the ERP templates obtained from
the control group during the LPR (thin lines) and LRE (thick
lines) tasks. Arrows mark significant differences of latency and
amplitude between the two potentials (p < 0.025).
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Fig. 7. A superimposition of the ERP templates obtained from
the group with dyslexia during the LPR (thin lines) and LRE
(thick lines) tasks. Arrows mark significant differences of laten-
cy and amplitude between the two potentials (p < 0.025).
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higher-order components are characterized by a greater laten-
cy variability in comparison with those related to lower levels
of sensorial processing of stimuli.

Discussion
The analysis of cognitive ERPs recorded in children is diffi-
cult because of their marked morphological variability in both
amplitude and latency. The necessity of manually measuring
the morphological characteristics of these potentials and the
inevitable smoothing produced by grand averaging affect the
reliability of group analyses. DTW proved to be useful for
improving the comparison between the ERPs recorded in dif-
ferent subjects. In fact, it reduces the morphological differ-
ences between the signals by stretching and shrinking their
temporal axes. The ERP templates of homogeneous groups of
subjects had a well-defined and sharper morphology compared
to grand averages. Consequently, the quantification of group
characteristics (latency and amplitude of the main cerebral
components) was more precise and easier to perform.

After the computation of the templates, DTW was used to
automatically identify the relevant ERP components by align-
ing the templates with individual averaged potentials. The
method proved to successfully measure a significant percent-
age of the peaks and troughs present on the traces. The many
components contribute differently to the total, because they
cannot be clearly identified on all channels and subjects.
Taking into account this feature, we computed the percentage
of peaks and troughs correctly identified by the method. As
could be inferred from the higher latency variability of cogni-
tive components, the efficacy of the method is reduced for long
latencies compared to short and middle ones. In order to further
improve the method performances, it could be useful to vary
the boundaries for computing the WF according to latency,
increasing the alignment flexibility for cognitive components.

Combining the automatic identification of ERP components
with a manual correction when necessary, we were able to char-
acterize the morphology of reading-related potentials and to
extract psychophysiologically relevant differences between nor-
mal and dyslexic children. The comparison between the ERPs
recorded in normal children during LPR and LRE put into evi-
dence that parietal regions are discriminating for reading aloud
versus passive watching of letters. The importance of such areas
in reading processes was also pointed out by other studies [17].
Furthermore, the extensive and remarkable increase of amplitude
during active reading revealed that the request of an explicit ver-
bal-motor performance activates specific attention processes
besides motion-related functions. Considering the group with
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Table 1(a). The latency [ms] of significantly different components
(p <<< 0.025) between LPR and LRE in the control group (mean
±±± standard deviation). Underlined characters indicate p <<< 0.01.

Channel

Component Pz P4 P3

N1 LPR 101.38 ±17.75
LRE 115.71 ±17.21

PmaxB LPR 308.02 ± 21.86
LRE 317.87 ± 20.31

P600b LPR 713.30 ± 89.20 693.20 ± 73.77
LRE 628.72 ± 66.13 624.77 ± 63.80
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dyslexia, the comparison between the potentials recorded in the
two tasks showed significant latency differences in the frontal
and central regions. The amplitude of the potentials in LRE was
significantly increased with respect to LPR in almost all the
recorded scalp sites, except for the parietal regions. Comparing
these observations with those from the control group, it is possi-
ble to argue that, when watching letters, the physiological mech-
anisms that are activated are altered and that the strategies for the
organization of reading aloud are abnormal. The direct compari-
son between the two groups of subjects in each separate task
allowed the  detection of specific differences in the main ERP
components. In the LPR task, the main differences concerned
latency, while amplitude differences were negligible. The laten-
cy of several ERP components was increased in dyslexic chil-
dren compared to controls in almost all the EEG channels except
for the temporal ones. The latency differences affecting the
postlexical components were greater than those affecting the pre-
and lexical ones. For the LRE task, the latency of the ERP com-
ponents in the occipital and temporal regions was increased in
dyslexic children compared to controls. The finding of fewer
latency differences between the two groups in LRE compared to
LPR suggests that the attention processes activated by verbal-
motor production contribute to increasing the efficiency of the
cerebral reading functions. Significant amplitude differences
were found in the central and parietal regions of the left hemi-
sphere, which is undoubtedly involved in language processing.

In conclusion, the method described in this article improves
the comparison of ERPs recorded in different groups of sub-
jects—and in different experimental
conditions—through the computa-
tion of proper templates representing
the relevant group of cerebral poten-
tials without morphological alter-
ations. Furthermore, the partially
automatic identification of features
allowed by the method makes the
analysis of ERPs easier, quicker,
and more reliable because the sub-
jective manual intervention of the
experimenter is reduced. The com-
parison between the potentials

recorded in normal children during two reading conditions,
which were characterized by increasing cognitive effort, high-
lighted some physiological strategies activated during reading. 

In particular, reading aloud likely activates attention
processes that are able to recruit larger neuronal resources for
the execution of the task. The visual presentation of single let-
ters employed in this experimental setting led the cerebral
activity focusing on the strict association between graphemes
and phonemes. In this condition, we evaluated the poor effi-
ciency of dyslexic children in building and employing a cere-
bral map of correspondence between written letters and their
sounds. The most evident difference between the two groups
of subjects in both reading tasks is an extensive delay of the
main ERP components. This delay increases from shorter to
longer latencies. The involvement of several components
related to perceptive functions, memory, attention, and cogni-
tive processes shows that dyslexia is a pathology in which not
only the reading mechanisms, but also more general functions,
at different time scales are compromised. The finding of group
differences in the right hemisphere supports the hypothesis of
dyslexia as a spread disorder which is not limited to the classi-
cal brain areas normally involved in linguistic abilities.

The use of mathematical procedures for quantifying ERPs’
morphology is critical for making the analysis of cognitive
potentials independent from the subjective judgment of the
experimenter. Furthermore, the comparison among studies
realized by different research laboratories would benefit from
the implementation of more reproducible analysis criteria.

Table 2(a). The latency [ms] of significantly different components (p <<< 0.025)
between LPR and LRE in children with dyslexia (mean ±±± standard deviation).
Underlined characters indicate p <<< 0.01.

Channel

Component Fz Cz Oz P3

N1 LPR 129.56 ± 17.95 129.93 ± 21.78
LRE 113.46 ± 17.05 106.41 ± 16.90

N3 LPR 425.20 ± 29.10 406.61 ± 26.18
LRE 394.96 ± 24.95 383.17 ± 24.61

Table 2(b). The amplitude [µµµV] of significantly different components (p <<< 0.025) between LPR and LRE
in children with dyslexia (mean ±±± standard deviation). Underlined characters indicate p <<< 0.01.

Channel

Component Fz Cz Pz Oz C4′ T4 T3

N1 LPR −1.64 ±1.30 −2.75 ±1.28
LRE −3.24 ±1.38 −3.32 ±1.30

PmaxA LPR 9.73 ± 3.31
LRE 13.01 ± 4.61

PmaxB LPR 9.67 ± 6.11
LRE 14.30 ± 7.37

N3 LPR −9.20 ± 4.07
LRE −13.26 ± 6.83

P600a LPR 5.62 ± 4.21 6.83 ± 5.08 3.72 ± 1.89
LRE 10.39 ± 4.45 12.35 ± 6.35 6.87 ± 2.18

P600b LPR 5.29 ± 1.59
LRE 9.30 ± 4.09
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Table 3(b). The amplitude [µµµV] of significantly different
components (p <<< 0.025) between normal children (N) and
children with dyslexia (D) during LPR (mean ±±± standard
deviation). Underlined characters indicate p <<< 0.01.

Channel

Component Cz

N2 N −2.39 ±1.20
D −4.71 ± 2.71

Table 4(b). The amplitude [µµµV] of significantly different
components (p <<< 0.025) between normal children (N) and
children with dyslexia (D) during LRE (mean ±±± standard
deviation). Underlined characters indicate p <<< 0.01.

Channel

Component C3′ P3

N2 N −2.68 ± 2.05
D −4.59 ± 1.73

N3 N −9.64 ± 5.34
D −6.17 ± 3.26

Table 4(a). The latency [ms] of significantly different
components (p <<< 0.025) between normal children (N) and
children with dyslexia (D) during LRE (mean ±±± standard
deviation). Underlined characters indicate p <<< 0.01.

Channel

Component Oz T4 T3

N1 N 107.26 ±10.52 109.22 ±13.14
D 120.79 ±19.02 121.90 ±19.75

P1 N 143.06 ±13.27
D 152.88 ±13.26

N2 N 180.85 ±14.30
D 199.40 ± 22.14

PmaxA N 211.19 ± 23.47
D 240.00 ± 23.76

P600a N 457.41 ± 32.65
D 496.19 ± 31.24

Fig. 10. The percentage of correct automatic detections for
each component.
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